Engineering Questions with Answers - Multiple Choice Questions

# Thermal Engineering MCQ’s – Condenser and Vacuum Efficiency

1 - Question

What type of pump can be used for obtaining maximum vacuum in condensers?
a) Air pump
b) Centrifugal pump
c) Steam pump
d) Gear pump
Explanation: Air pump can be used to obtain a desired level of vacuum in the condensers. It extracts air and other non-condensable gases. Air pumps are classified into wet air pumps and dry air pumps. Wet air pumps are used to remove a mixture of condensate and non-condensable gases while dry air pump removes the air only.

2 - Question

What instrument is used to measure vacuum in the condensers.
a) Thermometer
b) Vacuum gauge
c) Barometer
d) Pressure transducer
Explanation: Vacuum measurement in condensers is done using vacuum gauge. In case of condensers, vacuum pressure refers to the pressure below atmospheric pressure. For calculation purposes the barometric reading is taken to be 760 mm of Hg.

3 - Question

Which of the following is the correct definition of vacuum efficiency?
a) It is the ratio of actual vacuum to atmospheric pressure
b) It is the ratio of atmospheric pressure to actual vacuum
c) It is the ratio of maximum obtainable vacuum to actual vacuum
d) It is the ratio of actual vacuum to maximum obtainable vacuum

Explanation: Vacuum efficiency is defined as the ratio of the actual vacuum to the maximum obtainable vacuum.
Mathematically,
ηvacuum = ActualvacuumMaximumobtainablevacuum

4 - Question

Which of the following expressions is the correct one for calculating the vacuum efficiency of a condenser?
a) ActualvacuumAbsolutepressureofsteam−BarometerPressure
b) ActualvacuumBarometerPressure−Absolutepressureofsteam
c) BarometerPressure−AbsolutepressureofsteamActualvacuum
d) Absolutepressureofsteam−BarometerPressureActualvacuum

Explanation: Vacuum efficiency is the ratio of the actual vacuum to the maximum obtainable vacuum.
Therefore,
ηvacuum = ActualvacuumMaximumobtainablevacuum
but Maximum obtainable vacuum = Barometer pressure – Absolute pressure of steam
ActualvacuumBarometerPressure−Absolutepressureofsteam

5 - Question

Which of the following is the correct definition of condenser efficiency?
a) It is the ratio of the difference between the outlet and the inlet temperatures of cooling water to the difference between the temperature corresponding to the vacuum in the condenser and inlet temperature of cooling water
b) It is the ratio of the difference between the temperature corresponding to the vacuum in the condenser and inlet temperature of cooling water to the difference between the inlet and outlet temperature of cooling water
c) It is the ratio of the difference between the atmospheric pressure and the absolute pressure inside the condenser to the difference between the atmospheric pressure and the absolute partial pressure of the steam
d) It is the ratio of the difference between the actual pressure inside the condenser and the partial pressure of the steam to the atmospheric pressure
Explanation: Condenser efficiency is defined as the ratio of the difference between the outlet and the inlet temperatures of cooling water to the difference between the temperature corresponding to the vacuum in the condenser and inlet temperature of cooling water

6 - Question

Which of the following is the correct expression for calculating condenser efficiency?
a) RiseintemperatureofcoolingwaterTemp.correspondingtovacuuminthecondenser−Inlettemperatureofcoolingwater
b) RiseintemperatureofcoolingwaterInlettemperatureofcoolingwater−Temp.correspondingtovacuuminthecondenser
c) Inlettemperatureofcoolingwater−Temp.correspondingtovacuuminthecondenserRiseintemperatureofcoolingwater
d) Temp.correspondingtovacuuminthecondenser−InlettemperatureofcoolingwaterRiseintemperatureofcoolingwater

Explanation: The correct expression for condenser efficiency is –
ηcondenser = RiseintemperatureofcoolingwaterTemp.correspondingtovacuuminthecondenser−Inlettemperatureofcoolingwater
It can also be written as
ηcondenser = RiseintemperatureofcoolingwaterTemp.correspondingtotheabsolutepressureinthecondenser−Inlettemperatureofcoolingwater

7 - Question

The inlet and outlet temperatures of cooling water to a certain condenser are recorded to be 30°C and 40°C respectively. If the absolute pressure in the condenser is given to be 0.11 bar, determine efficiency.
a) 45.21%
b) 75.65%
c) 95.32%
d) 56.46%

Explanation: Given, twi = 30°C, two = 40°C
From steam tables corresponding to 0.11 bar
ts = 47.71°C
Therefore,
ηcondenser = RiseintemperatureofcoolingwaterTemp.correspondingtotheabsolutepressureinthecondenser−Inlettemperatureofcoolingwater
(%)ηcondenser = two–twits−twi x 100
Substituting the values,
ηcondenser = 40–3047.71−30 x 100 = 56.46%.

8 - Question

In a condenser, the temperature of steam entering in the condenser is observed to be 30°C. The condenser vacuum is recorded to be 670 mm of Hg. If the barometer reading is 760 mm of Hg, determine the vacuum efficiency.
a) 92.01%
b) 84.25%
c) 31.65%
d) 67.51%

Explanation: Actual vacuum = 670 mm of Hg
Using steam tables, At 30°C
Partial pressure of steam, P = 0.04242 bar = 0.04242/0.001333 mm of Hg
= 31.82 mm of Hg
Now, Maximum obtainable vacuum = 760 – 31.82 = 728.18 mm of Hg
Vacuum efficiency = ηvacuum = ActualvacuumMaximumobtainablevacuum
= 670 / 728.18
= 0.9201 or 92.01%.

9 - Question

The outlet temperature of cooling water to a condenser is observed to be 42°C. Determine the inlet temperature of cooling water if the absolute pressure inside the condenser is 0.1 bar. Take condenser efficiency as 76%.
a) 12.36°C
b) 29.87°C
c) 36.21°C
d) 40.65°C

Explanation: Given, two = 42°C, ηcondenser = 0.76, P = 0.1 bar
Using steam tables, corresponding to 0.1 bar
ts = 45.83°C
We know that,
ηcondenser = two–twits−twi
Substituting the values,
0.76=42−twi45.83−twi
Solving the equation for twi we get,
twi = 29.87°C.

10 - Question

The following data refers to a steam condenser –
Inlet temperature of cooling water = 36°C
Absolute pressure inside the condenser = 0.12 bar
efficiency = 78%
Determine the outlet temperature of cooling water.
a) 42.37°C
b) 39.12°C
c) 46.49°C
d) 35.21°C