Engineering Questions with Answers - Multiple Choice Questions
Home » MCQs » Aeronautical Engineering » Computational Fluid Dynamics – Euler Equation
Computational Fluid Dynamics – Euler Equation
1 - Question
The general transport equation is ∂(ρΦ)∂t+div(ρΦu⃗ )+div(ΓgradΦ)+S. For Eulerian equations, which of the variables in the equation becomes zero?
a) Γ
b) ρ
c) Φ
d) u⃗
View Answer
Explanation: Γ is the diffusion coefficient in the general transport equation. Diffusion of any property is not included in Eulerian equations. So, Γ=0.
2 - Question
Euler equations govern ____________ flows.
a) Viscous adiabatic flows
b) Inviscid flows
c) Adiabatic and inviscid flows
d) Adiabatic flows
View Answer
Explanation: Euler equations constitute the governing equations of flow for adiabatic and inviscid flows. Here, the dissipative transport of flow properties is neglected.
3 - Question
Which of these is the non-conservative differential form of Eulerian x-momentum equation?
a) ∂(ρu)∂t+∇.(ρuV⃗ )=−∂p∂x+ρfx
b) ρDuDt=−∂p∂x+ρfx
c) (ρu)∂t=−∂p∂x+ρfx
d) ρ∂u∂t=−∂p∂x+ρfx
View Answer
Explanation: Momentum equation excluding the viscous terms gives the Eulerian momentum equation. This can be given by ρDuDt=−∂p∂x+ρfx
4 - Question
Eulerian equations are suitable for which of these cases?
a) Compressible flows
b) Incompressible flows
c) Compressible flows at high Mach number
d) Incompressible flows at high Mach number
View Answer
Explanation: Eulerian equations are best suited for examining incompressible flows at high Mach number. They are used to study flow over the whole aircraft.
5 - Question
Euler form of momentum equations does not involve this property.
a) Stress
b) Friction
c) Strain
d) Temperature
View Answer
Explanation: Euler form of equations is for inviscid flows. For inviscid flows, viscosity is zero. So, there are no friction terms involved.
6 - Question
There is no difference between Navier-Stokes and Euler equations with respect to the continuity equation. Why?
a) Convection term plays the diffusion term’s role
b) Diffusion cannot be removed from the continuity equation
c) Its source term balances the difference
d) The continuity equation by itself has no diffusion term
View Answer
Explanation: Diffusion term, in general, is given by div(ΓgradΦ). For the continuity equation, Φ=1. And grad Φ=0. So, the continuity equation by itself has no diffusion term
7 - Question
Which of these equations represent a Euler equation?
a) ρDvDt=−∇p+ρg
b) ρDvDt=−∇p+μ∇2v+ρg
c) ∇p=μ∇2v+ρg
d) 0=μ∇2v+ρg
View Answer
Explanation: ρDvDt=−∇p+ρg represents a Euler equation. All other equations have this term μ∇2v representing diffusion.
8 - Question
Which of the variables in the equation ρDuDt=−∂p∂x+∂τxx∂x+∂τyx∂y+∂τzx∂z+ρfx will become zero for formulating Euler equation?
a) fx, τyx, τzx
b) τxx, τyx, u
c) τxx, τyx, τzx
d) τxx, p, τzx
View Answer
Explanation: τxx, τyx, τzx represent shear stresses due to viscous effects; u is the x-velocity; fx is the body force and p is the pressure. τxx,τyx,τzx should become zero for the flow to be in-viscid and the equations to be Eulerian.
9 - Question
In Euler form of energy equations, which of these terms is not present?
a) Rate of change of energy
b) Heat radiation
c) Heat source
d) Thermal conductivity
View Answer
Explanation: As the flow considered by Euler equations is adiabatic, heat cannot enter or exit the system. So, the thermal conduction is omitted.
10 - Question
To which of these flows, the Euler equation is applicable?
a) Couette flow
b) Potential flow
c) Stokes Flow
d) Poiseuille’s flow
View Answer
Explanation: Among the given flows, only potential flows are in-viscid. So, the Euler equation is applicable to only potential flows among the above.